RUSSIAN JOURNAL OF FOREST SCIENCE, 2022, No.1, P. 34–46


MOSAIC STRUCTURE OF BLUEBERRY AND LINGONBERRY CENOPOPULATIONS AND THE DYNAMICS OF SOIL ORGANIC MATTER IN THE SOUTHERN MOSCOW REGION PINE FORESTS
Ye. V. Zubkova1, P. V. Frolov1, S. S. Bykhovets1, M. A. Nadporozhskaya2, G. G.Frolova1

1Institute of Physicochemical and Biological Problems of Soil Sciences of the RAS
Institutskaya st. 2/2, Pushchino, Moscow Oblast, 142290, Russia
E-mail: zubkova@pbcras.ru
2
Saint Petersburg State University,
Universitetskaya emb. 7/9, Saint Petersburg, 199034


Received 16 July 2020
Studies of the spatial heterogeneity of the distribution of dwarf cenopopulations have shown that the dominance of blueberries (Vaccinium myrtillus L.) and lingonberries (V. vitis-idaea L.) in the ground cover is determined by environmental factors. Under the well-defined microrelief conditions with uniform illumination, soil moisture acts as a limiting factor for the spatial distribution of dwarf shrubs. Blueberries occupy lower, moister areas of the microrelief compared to lingonberries, while prolonged flooding with melt waters for 1–2 weeks leads to the death of the partial blueberry bushes. In areas of the ecological niches overlapping, dwarf shrubs successfully codominate, due to the difference in the morpho-physiological characteristics of these species. It was shown that in single-storey pine forests of the southern Moscow region without tree undergrowth, the illumination factor does not significantly affect the growth of dwarf shrubs. The presence of the second tree layer limits the distribution of shrubs under the crowns of spruce and linden: with a transmittance of photosynthetically active radiation (PAR) less than 7%, there are no partial bushes; in the range from 7 to 10%, there are single shoots of blueberries and lingonberries of reduced vitality (less than 0.1 m in height); with a PAR transmittance of more than 10%, the joint coverage of blueberries and lingonberries reaches 60–80%. Computational experiments analysing the coupled dynamics of the grass-dwarf shrub layer’s plants and the soil using the CAMPUS-S - EFIMOD - Romul_Hum model system showed the high accuracy of the model system and the comparability of the calculation results with field data.
Key words: blueberry, lingonberry, forest litter, mineral soil, soil moisture, illumination, imitational modelling.
Acknowledgements: The study has been carried out with a financial support of the RSF (18-14-00362), the field work in Otradinskoye forestry unit were conducted within the framework of an RFBR grant №15-04-08712а, the analysis of the biogenic elements concentration in soils was carried out within the framework of the State Contract with the Institute of Physicochemical and Biological Problems of Soil Sciences № АААА-А18-118013190176-2.
DOI: 10.31857/S0024114821060127


REFERENCES



  • Chertov O., Komarov A., Shaw C., Bykhovets S., Frolov P., Shanin V., Grabarnik P., Priputina I., Zubkova E., Shashkov M., Romul_Hum—A model of soil organic matter formation coupling with soil biota activity. II. Parameterisation of the soil food web biota activity, Ecological Modelling, 2017a, Vol. 345, pp. 125–139.

  • Chertov O., Shaw C., Shashkov M., Komarov A., Bykhovets S., Shanin V., Grabarnik P., Frolov P., Kalinina O., Priputina I., Zubkova E., Romul_Hum model of soil organic matter formation coupled with soil biota activity. III. Parameterisation of earthworm activity, Ecological Modelling, 2017b, Vol. 345, pp. 140–149.

  • Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., Paulißen D., Zeigerwerte von Pflanzen in Mitteleuropa (Indicator values of plants in Central Europe), In: Scripta Geobotanica, 1991, Vol. 18, Verlag Erich Goltze KG, Göttingen, 248 p.

  • Emmer I.M., Humus form and soil development during a primary succession of monoculture Pinus sylvestris on poor sandy substrates; Amsterdam: Annals of Forest Science, 1995, 135 p.

  • Frolov P., Shanin V., Zubkova E., Bykhovets S., Grabarnik P., CAMPUS-S – The model of ground layer vegetation populations in forest ecosystems and their contribution to the dynamics of carbon and nitrogen. I. Problem formulation and description of the model, Ecological Modelling, 2020a, Vol. 431, Article 109184, pp. 1–12.

  • Frolov P., Zubkova E., Shanin V., Bykhovets S., Mäkipää R., Salemaa M., CAMPUS-S – The model of ground layer vegetation populations in forest ecosystems and their contribution to the dynamics of carbon and nitrogen. II. Parameterization, validation and simulation experiments, Ecological Modelling, 2020b, Vol. 431, Article 109183, pp. 1–14.

  • Komarov A.S., Chertov O.G., Zudin S.L., Nadporozhskaya M.A., Mikhailov A.V., Bykhovets S.S., Zudina E.V., Zoubkova E.V., EFIMOD 2 – A model of growth and elements cycling of boreal forest ecosystems, Ecological Modelling, 2003, Vol. 170, pp. 373–392.

  • Komarov A., Chertov O., Bykhovets S., Shaw C., Nadporozhskaya M., Frolov P., Shashkov M., Shanin V., Grabarnik P., Priputina I., Zubkova E., Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing, Ecological Modelling, 2017, Vol. 345, pp. 113–124.

  • Mäkipää R., Response patterns of Vaccinium myrtillus and V. vitis-idaea along nutrient gradients in boreal forest, Journal of Vegetation Science, 1999, Vol. 10, No. 1, pp. 17–26.

  • Maslov A.A., Logofet D.O., Bilberry vs. cowberry in a Scots pine boreal forest: III Another forest, another method, and similar conclusions, Ecological Modelling, 2020, Vol. 431, Article 109193.

  • Mony C., Garbey M., Smaoui M., Benot M.L., Large scale parameter study of an individual-based model of clonal plant with volunteer computing, Ecological Modelling, 2011, Vol. 222, No. 4, pp. 935–946.

  • Morris D.M., Kimmins J.P., Dan I., Duckert R., The use of soil organic matter as a criterion of the relative sustainability of forest management alternatives: A modeling approach using FORECAST, Forest Ecology & Management, 1997, Vol. 94, No. 1–3, pp. 61–78.

  • Oborny B., Mony C., Herben T., From virtual plants to real communities: a review of modelling clonal growth, Ecological Modelling, 2012, Vol. 234, pp. 3–19.

  • Seidl R., Rammer W., Scheller R.M., Spies T.A., An individual-based process model to simulate landscape-scale forest ecosystem dynamics, Ecological Modelling, 2012, Vol. 231, pp. 87–100.

  • Shanin V., Grabarnik P., Shashkov M., Ivanova N., Bykhovets S., Frolov P., Stamenov M., Crown asymmetry and niche segregation as an adaptation of trees to competition for light: conclusions from simulation experiments in mixed boreal stands, Mathematical & Computational Forestry & Natural-Resource Sciences, 2020, Vol. 12, No. 1, pp. 26–49.

  • Tuomi M., Rasinmäki J., Repo A., Vanhala P., Liski J., Soil carbon model Yasso07 graphical user interface, Environmental Modeling & Softwar, 2011, Vol. 26, No. 11, pp. 1358-1362.

  • Arinushkina E.V., Rukovodstvo po khimicheskomu analizu pochv (Handbook on chemical analysis of soils), Moscow: Izd-vo MGU, 1970, 487 p.

  • Bulygina O.N., Razuvaev V.N., Aleksandrova T.M., Opisanie massiva dannykh sutochnoi temperatury vozdukha i kolichestva osadkov na meteorologicheskikh stantsiyakh Rossii i byvshego SSSR (TTTR) (Description of the data set of daily air temperature and precipitation at meteorological stations in Russia and the former USSR (TTTR)), Certificate of state registration of the database No. 2014620942, available at: http://meteo.ru/data/162-temperature-precipitation#opisanie-massiva-dannykh (February 20, 2020).

  • Bykhovets S.S., Komarov A.S., A simple statistical model of soil climate with a monthly step, Eurasian Soil Science, 2002, Vol. 35, No. 4, pp. 392-400.

  • Vlagomer grunta "MG-44". Tekhnicheskoe opisanie i instruktsiya po ekspluatatsii, (Soil moisture meter "MG-44". Technical description and operating manual), Kharkov: OOO "Vesoizmeritel' ", 2009, 9 p., available at: http://vlagomer.at.ua/load/instrukcija_po_ehkspluatacii_mg_44/41-41-40-47 (May 12, 2020).

  • Grabarnik P.Y., Shanin V.N., Chertov O.G., Priputina I.V., Bykhovets S.S., Petropavlovskii B.S., Frolov P.V., Zubkova E.V., Shashkov M.P., Frolova G.G., Modelirovanie dinamiki lesnykh ekosistem kak instrument prognozirovaniya i upravleniya lesami (Modelling of Forest Ecosystem Dynamics: an Instrument for Forest Prediction and Management), Lesovedenie, 2019, No. 6, pp. 488–500.

  • Komarov A.S., Chertov O.G., Abakumov E.V., Andrienko G., Andrienko N., Apps M., Bobrovskii M.V., Bkhatti Dzh., Bykhovets S.S., Grabarnik P.Ya., Glukhova E.M., Zubkova E.V., Zudin S.L., Zudina E.V., Kubasova T.S., Larionova A.A., Luk'yanov A.M., Martynkin A.V., Mikhailov A.V., Moren F., Nadporozhskaya M.A., Priputina I.V., Smirnov V.E., Khanina L.G., Shanin V.N., Shou S., Modelirovanie dinamiki organicheskogo veshchestva lesnykh pochv (Modeling of dynamics of organic matter in forest soils), Moscow: Nauka, 2007, 380 p.

  • Kurganova I.N., Lopes De Gerenyu V.O., Ableeva V.A., Bykhovets S.S., Klimat yuzhnogo Podmoskov'ya: sovremennye trendy i otsenka ekstremal'nosti (Climate of Moscow region south: current trends and assessment of extremeness), Fundamental'naya i prikladnaya klimatologiya, 2017, No. 4, pp. 62–78.

  • Lidov V.P., Geomorfologicheskie osobennosti srednego techeniya doliny r. Oki na primere Prioksko-Terrasnogo gosudarstvennogo zapovednika i prilegayushchikh territorii (Geomorphological features of the middle reaches of the river valley. Oka on the example of the Prioksko-Terrasny state reserve and adjacent territories), In: Okskaya kompleksnaya ekspeditsiya. Tr. NII geografii MGU (Oka multi-method expedition. Proceedings of the Research Institute of Geography, Moscow State University), Moscow, 1949, pp. 179–190.

  • Maslov A.A., Logofet D.O., Analiz melkomasshtabnoi dinamiki dvukh vidov-dominantov v sosnyake chernichno-brusnichno-dolgomoshnom. I. Odnorodnaya markovskaya tsep' i pokazateli tsiklichnosti (Analyzing the fine-scale dynamics of two dominant species in a Polytrichum-Myrtillus pine forest. I. A homogeneous Markov chain and cyclicity indices), Zhurnal obshchei biologii, 2016, Vol. 77, No. 6, pp. 423–433.

  • Maslov A.A., Logofet D.O., Sovmestnaya dinamika populyatsii cherniki i brusniki v zapovednom poslepozharnom sosnyake zelenomoshnike. Model' s osrednennymi veroyatnostyami perekhoda (Joint population dynamics of Vaccinium myrtillus and V. vitis-idaea in the protected post-fire Cladina–Vaccinium pine forest. Markov model with averaged transition probabilities), Zhurnal obshchei biologii, 2020, Vol. 81, No. 4, pp. 243–256.

  • Nadporozhskaya M.A., Zubkova E.V., Frolov P.V., Bykhovets S.S., Chertov O.G., Sopodchinennost' pochvennykh uslovii i rastitel'nykh soobshchestv v sosnyakakh kak sledstvie deistviya kompleksa faktorov (Factors of soil and ground vegetation formation in pine forests), Vestnik TvGU. Ser. Biologiya i ekologiya, 2018, No. 2, pp. 122–138.

  • Omel'ko A.M., Model' rosta derev'ev temnokhvoinykh porod na osnove L-sistem (An L-system based model of growth of conifer tree growth), Sibirskii Ekologicheskii zhurnal, 2006, Vol. 13, No. 2, pp. 181–188.

  • Otsenka i sokhranenie bioraznoobraziya lesnogo pokrova v zapovednikakh Evropeiskoi Rossii (Evaluation and conservation of biodiversity of the forest cover in nature reserves of European part of Russia), Moscow: Nauchnyi mir, 2000, 196 p.

  • Polyanskaya T.A., Zhukova L.A., Shestakova E.V., Ontogenez cherniki obyknovennoi (Vaccinium myrtillus L.) (Ontogeny of Vaccinium myrtillus L.), In: Ontogeneticheskii atlas lekarstvennykh rastenii (Ontogenetic atlas of medicinal plants), Yoshkar-Ola: MarGU, 2000, Vol. II, pp. 51–59.

  • Prokop'eva L.V., Zhukova L.A., Glotov N.V., Ontogenez brusniki obyknovennoi (Vaccinium vitis-idaea L.) (Ontogeny of Vaccinium vitis-idaea L.), In: Ontogeneticheskii atlas lekarstvennykh rastenii (Ontogenetic atlas of medicinal plants), Yoshkar-Ola: MarGU, 2000, Vol. II, pp. 39–46.

  • Rastvorova O.G., Fizika pochv (prakticheskoe rukovodstvo) (Soil physics: a practical guide), Leningrad: Izd-vo LGU, 1983, 193 p.

  • Remezov N.P., Bykova L.N., Smirnova K.M., Potreblenie i krugovorot azota i zol'nykh elementov v lesakh Evropeiskoi chasti SSSR (Consumption and cycling of nitrogen and mineral constituents in forests of European part of the USSR), Moscow: Izd-vo MGU, 1959, 284 p.

  • Rogozin M.V., Razin G.S., Modeli dinamiki i modelirovanie razvitiya drevostoev (Dynamics models and modeling of tree stand development), Sibirskii lesnoi zhurnal, 2015, No. 2, pp. 50-70.

  • Rodin L.E., Bazilevich N.I., Dinamika organicheskogo veshchestva i biologicheskii krugovorot zol'nykh elementov i azota v osnovnykh tipakh rastitel'nosti zemnogo shara (Organic matter dynamics and biogeochemical cycles of mineral constituents and nitrogen across the dominant vegetation types around the world), Moscow - Leningrad: Nauka, 1965, 253 p.

  • Rozanov B.G., Morfologiya pochv (Soil morphology), Moscow: Akademicheskii proekt, 2004, 432 p.

  • Fridland V.M., Pochvy Prioksko-Terrasnogo gosudarstvennogo zapovednika (Soils of the Prioksko-Terrasny State Reserve), In: Materialy po geografii i genezisu pochv lesnoi zony Evropeiskoi territorii SSSR. Trudy Pochvennogo inst. im. V.V. Dokuchaeva (Materials on the geography and genesis of soils in the forest zone of the European territory of the USSR. Proceedings of the V.V. Dokuchaeva Soils Institute), Moscow: Izd-vo AN SSSR, 1955, Vol. XLVI, pp. 136–190.

  • Frolov P.V., Zubkova E.V., Modelirovanie dinamiki biomassy rastenii travyano-kustarnichkovogo yarusa lesnykh ekosistem (Modeling the dynamics of biomass of plants of the herb-dwarf layer of forest ecosystems), In: Sokhranenie lesnykh ekosistem: problemy i puti ikh resheniya (Protection of forest ecosystems: problems and solutions), Kirov: Raduga-Press, 2017, pp. 334–339.

  • Frolov P.V., Zubkova E.V., Komarov A.S., A cellular automata model for a community comprising two plant species of different growth forms, Biology Bulletin, 2015, Vol. 42, No. 4, pp. 279-286.

  • http://cepl.rssi.ru/bio/flora/ecoscale.htm, (May 12, 2020)

  • Tsyganov D.N., Fitoindikatsiya ekologicheskikh rezhimov v podzone khvoino-shirokolistvennykh lesov (Phitoindication of ecological requirements in the mixed forest subdomain), Moscow: Nauka, 1983, 197 p.

  • Shanin V.N., Shashkov M.P., Ivanova N.V., Bykhovets S.S., Grabarnik P.Y., Issledovanie struktury drevostoev i mikroklimaticheskikh uslovii pod pologom lesa na postoyannoi probnoi ploshchadi v Prioksko-Terrasnom zapovednike (Study of the structure of stands and microclimatic conditions under the forest canopy on a permanent trial plot in the Prioksko-Terrasny reserve), In: Trudy Prioksko-Terrasnogo zapovednika (Proceedings of the Prioksko-Terrasny reserve), Moscow: Izd. Tovarishchestvo nauchnykh izdanii KMK, 2018, Vol. 7, pp. 72–85.

  • Shvidenko A.Z., Shchepashchenko D.G., Nil'son S., Bului Y.I., Tablitsy i modeli khoda rosta i produktivnosti nasazhdenii osnovnykh lesoobrazuyushchikh porod Severnoi Evrazii: normativno-spravochnye materialy (Tables and models of growth and productivity of forests of major forest forming species of Northern Eurasia), Moscow: Izd-vo Rosleskhoz, IIASA, 2008, 886 p.

  • Sherstyukov A.B., Opisanie massiva sutochnykh dannykh o temperature pochvy na glubinakh do 320 sm po meteorologicheskim stantsiyam Rossiiskoi Federatsii (Description of the array of daily data on soil temperature at depths of up to 320 cm from meteorological stations of the Russian Federation), available at: http://meteo.ru/data/164-soil-temperature (February 20, 2020).