ISSN: 0024-1148 Russian Journal of Forest Science. 2014, No. 4, pp. 56-66


SPATIOTEMPORAL CONTROLS OF SOIL CO2 FLUXES IN SOUTH TAIGA SPRUCE FOREST IN EUROPEAN RUSSIA


D. V. Karelin1,2,3, A. V. Pochikalov2, D. G. Zamolodchikov1,2, M. L. Gitarskii3
1Center of Forest Ecology and Productivity, Russian Academy of Sciences
Profsoyuznaya st. 84/32 bldg. 14, Moscow, 117997
2Lomonosov Moscow State University
Leninskie Gory 1, Moscow, 119991
3Institute of Global Climate and Ecology
Glebovskaya st. 20b, Moscow, 107258
E-mail: dzamolod@cepl.rssi.ru


Received 24 February 2014


5-year long studies of carbon dioxide soil surface emissions carried out in south taiga spruce forest (Valday region, North-West of Russia) revealed the spatiotemporal factors at different scales from hours and days to seasons and years, and from micro- to mesobiotopes. The приземный air temperature, upper soil layer temperature and moisture, sum of precipitation before measurement, and also litter thickness, distance to the nearest log of spruce, distance to the nearest dry standing spruce, and coefficient of soil respiration rate increase were amongst the most significant soil respiration controls. The temperature at 1 cm depth in soil turned out to be the only significant parameter, which was common for spatial and temporal analyses of soil surface СО2 emission. Our data strongly advocate for the necessity of concurrent analysis of spatial and temporal factors, when estimating or predicting soil surface CO2 fluxes. 



  • Acknowledgements: This study was accomplished in the framework of research of the Federal Service for Hydrometeorology and Environmental Monitoring of Russia, and it was partly supported by the Russian Foundation for Basic Research and the Russian Geographical Society (13-05-41478 RGO_A).

  • Keywords: soil respiration, soil CO2 emission, spatiotemporal variability, boreal ecosystem.


REFERENCES

  1. Yevdokimov I.V., Larionova A.A., Shmitt M., Lopes De Gerenyu V.O., Bahn M., Experimental assessment of the contribution of plant root respiration to the emission of carbon dioxide from the soil, Eurasian Soil Science, 2010, Vol. 43. No. 12, pp. 1373-1381.

  2. Zavarzin G.A., Puly i potoki ugleroda v nazemnykh ekosistemakh Rossii (Pools and fluxes of carbon in terrestrial ecosystems of Russia), Moscow: Nauka, 2007, 315 p.

  3. Kurganova I.N., Kudeyarov V.N., Otsenka potokov dioksida ugleroda iz pochv taezhnoi zony Rossii (Assessment of carbon dioxide fluxes from the soils of taiga zone of Russia), Pochvovedenie, 1998, No. 9, pp. 1058-1070.

  4. Kurganova I.N., Lopes De Gerenyu V.O., Myakshina T.N., Sapronov D.V., Kudeyarov V.N., CO2 emission from soils of various ecosystems of the Southern Taiga Zone: Data analysis of continuous 12-year monitoring, Doklady Biological Sciences, 2011, Vol. 436, No. 1, pp. 56-58.

  5. Lopes De Gerenyu V.O., Kurganova I.N., Rozanova L.N., Kudeyarov V.N., Godovye potoki dioksida ugleroda iz nekotorykh pochv yuzhnotaezhnoi zony Rossii (Annual fluxes of carbon dioxide from soils of southern taiga zone of Russia), Pochvovedenie, 2001, No. 9, pp. 1045-1059.

  6. Safonov S.S., Karelin D.V., Grabar V.A., Latyshev B.A., Grabovskii V.I., Uvarova N.E., Zamolodchikov D.G., V.N. K., Gitarskii M.L., Emissiya dioksida ugleroda ot razlozheniya valezha v yuzhnotaezhnom el'nike (The Emission of Carbon from the Decomposition of Woody Debris in the Southern Taiga Spruce Forest), Lesovedenie, 2012, No. 5, pp. 44-49.

  7. Allison S.D., Treseder K.K., Climate change feedbacks to microbial decomposition in boreal soils, Fungal Ecology, 2011, Vol. 4, No. 6, pp. 362-374.

  8. Bond-Lamberty B., Thomson A., Temperature-associated increases in the global soil respiration record, Nature, 2010, Vol. 464, No. 7288, pp. 579-582.

  9. Borken W., Xu Y.-J., Davidson E.A., Beese F., Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests, Global Change Biology, 2002, Vol. 8, No. 12, pp. 1205-1216.

  10. Chen S., Huang Y., Zou J., Shen Q., Hu Z., Qin Y., Chen H., Pan G., Modeling interannual variability of global soil respiration from climate and soil properties, Agricultural and Forest Meteorology, 2010, Vol. 150, No. 4, pp. 590-605.

  11. Concilio A., Chen J., Ma S., North M., Precipitation drives interannual variation in summer soil respiration in a Mediterranean-climate, mixed-conifer forest, Climatic Change, 2009, Vol. 92, No. 1-2, pp. 109-122.

  12. Curiel Yuste J., Janssens I.A., Carrara A., Meiresonne L., Ceulemans R., Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest, Tree Physiology, 2003, Vol. 23, No. 18, pp. 1263-1270.

  13. De Forest J.L., Noormets A., Mcnulty S.G., Sun G., Tenney G., Chen J., Phenophases alter the soil respiration–temperature relationship in an oak-dominated forest, International Journal of Biometeorology, 2006, Vol. 51, No. 2, pp. 135-144.

  14. Dixon R.K., Solomon A.M., Brown S., Houghton R.A., Trexier M.C., Wisniewski J., Carbon pools and flux of Global Forest Ecosystems, Science, 1994, Vol. 263, No. 5144, pp. 185-190.

  15. Dornbush M.E., Raich J.W., Soil temperature, not aboveground plant productivity, best predicts intra-annual variations of soil respiration in central Iowa grasslands, Ecosystems, 2006, Vol. 9, No. 6, pp. 909-920.

  16. Hibbard K.A., Law B.E., Reichstein M., Sulzman J., An analysis of soil respiration across northern hemisphere temperate ecosystems, Biogeochemistry, 2005, Vol. 73, No. 1, pp. 29-70.

  17. Gaumont-Guay D., Black T.A., Barr A.G., Griffis T.J., Jassal R.S., Krishnan P., Grant N., Nesic Z., Eight years of forest-floor CO2 exchange in a boreal black spruce forest: Spatial integration and long-term temporal trends, Agricultural and Forest Meteorology, 2014, Vol. 184, pp. 25-35.

  18. http://globecarboncycle.unh.edu

  19. Keith H., Jacobsen K.L., Raison R.J., Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest, Plant and Soil, 1997, Vol. 190, No. 1, pp. 127-141.

  20. Khomik M., Altaf Arain M., Mccaughley J.H., Temporal and spatial variability of soil respiration in a boreal mixedwood forest, Agricultural and Forest Meteorology, 2006, Vol. 140, pp. 244-256.

  21. Loveland T.R., Reed B.C., Brown J.F., Ohlen D.O., Zhu Z., Yang L., Merchant J.W., Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data, International Journal of Remote Sensing, 2000, Vol. 21, No. 6-7, pp. 1303-1330.

  22. Martin J.G., Bolstad P.V., Variation of soil respiration at three spatial scales: Components within measurements, intra-site variation and patterns on the landscape, Soil Biology and Biochemistry, 2009, Vol. 41, No. 3, pp. 530-543.

  23. Ngao J., Epron D., Delpierrec N., Bréda N., Granier A., Longdoz B., Spatial variability of soil CO2 efflux linked to soil parameters and ecosystem characteristics in a temperate beech forest, Agricultural and Forest Meteorology, 2012, Vol. 154-155, pp. 136-146.

  24. Oishi C., Palmroth S., Butnor J.R., Johnsen K.H., Oren R., Spatial and temporal variability of soil COefflux in three proximate temperate forest ecosystems, Agricultural and Forest Meteorology, 2013, Vol. 171–172, pp. 256–269.

  25. Raich J.W., Potter C.S., Global patterns of carbon dioxide emissions from soils, Global Biogeochemical Cycles, 1995, Vol. 9, No. 1, pp. 23-36.

  26. Raich J.W., Potter C.S., Bhagawati D., Interannual variability in global soil respiration, 1980-94, Global Change Biology, 2002, Vol. 8, No. 8, pp. 800-812.

  27. Raich J.W., Schlesinger W.H., The Global carbon dioxide flux in soil respiration and its relation to vegetation and climate, Tellus B, 1992, Vol. 44, No. 2, pp. 81-99.

  28. Reichstein M., Rey A., Freibauer A., Tenhunen J., Valentini R., Banza J., Casals P., Grünzweig J.M., Irvine J., Joffre R., Law B.E., Loustau D., Miglietta M., Oechel W., Ourcival J.-M., Pereira J.S., Peressotti A., Ponti F., Qi Y., Rambal S., Rayment M., Romanya J., Rossi F., Tedeschi V., Tirone G., Xu M., Yakir D., Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices, Global Biogeochemical Cycles, 2003, Vol. 17, No. 4, pp. 1104.

  29. Ryan M.G., Law B.E., Interpreting, measuring and modeling soil respiration, Biogeochemistry, 2005, Vol. 73, No. 1, pp. 3-27.

  30. Saiz G., Black K., Reidy B., Lopez S., Farrell E.P., Assessment of soil CO2 efflux and its components using a process-based model in a young temperate forest site, Geoderma, 2007, Vol. 139, No. 1-2, pp. 79-89.

  31. The LI-6200 Primer. An Introduction to Operating the LI-6200 Portable Photosynthesis System, Lincoln, USA: LI-COR, Inc., 1990, 132 p.

  32. Wei W., Weile C., Shaopeng W., Forest soil respiration and its heterotrophic and autotrophic components: global patterns and responses to temperature and precipitation, Soil Biology and Biochemistry, 2010, Vol. 42, No. 8, pp. 1236-1244.

  33. Xu M., Qi Y., Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California, Global Change Biology, 2001, Vol. 7, No. 6, pp. 667-677.

  34. Yan J., Zhang D., Zhou G., Liu J., Soil respiration associated with forest succession in subtropical forests in Dinghushan Biosphere Reserve, Soil Biology and Biochemistry, 2009, Vol. 41, No. 5, pp. 991-999.