RUSSIAN JOURNAL OF FOREST SCIENCE, 2019, No. 6, P.488-500


MODELLING OF FOREST ECOSYSTEM DYNAMICS: AN INSTUMENT FOR FOREST PREDICTION AND MANAGEMENT
P. Ya. Grabarnik1, V. N. Shanin1,2, O. G. Chertov3, I. V. Priputina1, S. S. Bykhovets1, B. S. Petropavlovskii4, P. V. Frolov1, E. V. Zubkova1, M. P. Shashkov1,5, G. G. Frolova1

1Institute of Physicochemical and Biological Problems of Soil Sciences, Russian Academy of Sciences, Institutskaya st. 2, Pushchino, Moscow Oblast, 142290, Russia
E-mail: pavel.grabarnik@gmail.com
2Center for Forest Ecology and Productivity of the Russian Academy of Sciences, Profsoyuznaya st. 84/32 bldg. 14, Moscow, 117997, Russia
3University of Applied Sciences Bingen
Berlinstraße 109, 55411, Bingen am Rhein, Rheinland-Pfalz, Germany
4Botanical Garden-Institute, Far-East branch of the Russian Academy of Sciences, Makovskii st. 142, Vladivostok, 690024, Russia
5Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
Institutskaya st. 4, Pushchino, Moscow Oblast, 142290, Russia


Received 14 May 2018
The transition from an extensive to an intensive model of forestry and high attention paid to environmental problems when using natural resources calls for new scientific methods of assessment and prediction of resources and functions of forests in Russia. We analyzed the structure, capabilities and prospects of the main groups of mathematical models of forest ecosystems. Silvicultural growth-yield models are broadly used to simulate forest management regimes. The yield is calculated from the growth tables taking into account local light conditions. Process-based models rely on mechanisms and eco-physiological processes prescribed at some degree of detail. They are used to calculate an increment of biomass from simplified equations of photosynthesis and respiration, or from the empirical functions of net biological productivity. The combination of these models with soil models is a way to assess dynamics of soil organic matter, CO2 emissions to the atmosphere, and availability of nitrogen for plants. Additionally, hydrothermal conditions and dynamics of grass and shrub layer can be calculated. Detailed individual-based spatially explicit models calculate growth of each tree having coordinates on the spatial grid, taking into account competition for light and soil resources. Forest models in general, and especially process models of ecosystems are science-based prediction methods which can be used to scientifically justify and make decisions on forest management.
Keywords: forest ecosystems, dynamic models, silvicultural models, soil models, process-based models.
Acknowledgements: This study was supported by the Russian Science Foundation (grant 18-14-00362 to P. Ya. Grabarnik, V. N. Shanin, I. V. Priputina, P. V. Frolov, E. V. Zubkova, M. P. Shashkov, G. G. Frolova). Section ‘’Models of heat and moisture regime of soils and ecosystems’’ was written by S. S. Bykhovets in the framework of the subject of the program of fundamental studies (project АААА-А18-118013190176-2).
DOI: 10.1134/S0024114819030033            


REFERENCES:



  • Ågren G.I., Bosatta E., Theoretical ecosystem ecology: Understanding element cycling, Cambridge: Cambridge university press, 1996, 252 p.

  • Berezovskaya F.S., Karev G.P., Shvidenko A.Z., Modelirovanie dinamiki drevostoev: ekologo-fiziologicheskii podkhod (Modeling of the stand dynamics: environmental and physiological approach), Moscow: VNIITslesresurs, 1991, 84 p.

  • Beringer T.I.M., Lucht W., Schaphoff S., Bioenergy production potential of global biomass plantations under environmental and agricultural constraints, Global Change Biology Bioenergy, 2011, Vol. 3, No. 4, pp. 299-312.

  • Bhatti J., Chertov O., Komarov A., Influence of climate change, fire, insect and harvest on carbon dynamics for jack pine in central Canada: simulation approach with the EFIMOD model, International Journal of Climate Change: Impacts and Responses, 2009, Vol. 1, No. 3, pp. 43-61.

  • Bossel H., TREEDYN3 Forest Simulation Model - Mathematical model, program documentation, simulation results, Göttingen: Universität Göttingen, 1994, 118 p.

  • Bourrier F., Cordonnier T., Mao Z., Saint-André L., Stokes A., Modelling and predicting the spatial distribution of tree root density in heterogeneous forest ecosystems, Annals of Botany, 2015, Vol. 116, No. 2, pp. 261-277.

  • Bykhovets S.S., Komarov A.S., A simple statistical model of soil climate with a monthly step, Eurasian Soil Science, 2002, Vol. 35, No. 4, pp. 392-400.

  • Chertov O., Komarov A., Kolström M., Pitkänen S., Strandman H., Zudin S., Kellomäki S., Modelling the long-term dynamics of populations and communities of trees in boreal forests based on competition for light and nitrogen, Forest Ecology and Management, 2003, Vol. 176, No. 1, pp. 355-369.

  • Chertov O., Komarov A., Loukianov A., Mikhailov A., Nadporozhskaya M., Zubkova E., The use of forest ecosystem model EFIMOD for research and practical implementation at forest stand, local and regional levels, Ecological Modelling, 2006, Vol. 194, No. 1, pp. 227-232.

  • Chertov O.G., Ekologiya lesnykh zemel': pochvenno-ekologicheskie issledovaniya lesnykh mestoobitanii (Environment of forested lands: soil and environmental studies at forest sites), Leningrad: Nauka, 1981, 192 p.

  • Chertov O.G., Komarov A.S., Theoretical approaches to modelling the dynamics of soil organic matter, Eurasian Soil Science, 2013, Vol. 46, No. 8, pp. 845-853.

  • Chertov O.G., Komarov A.S., Nadporozhskaya M., Bykhovets S.S., Zudin S.L., ROMUL — a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling, Ecological Modelling, 2001, Vol. 138, No. 1-3, pp. 289-308.

  • Chumachenko S.I., Bazovaya model' dinamiki mnogovidovogo raznovozrastnogo lesnogo tsenoza (A core model of dynamics of multi-species variously aged forest coenose), Nauchnye trudy Moskovskogo gosudarstvennogo universiteta lesa, 1993, No. 248, pp. 147-180.

  • Chumachenko S.I., Modelirovanie dinamiki mnogovidovykh raznovozrastnykh lesnykh tsenozov (The modelling of dynamic of all-aged multispecies forest coenosis), Zhurnal obshchei biologii, 1998, Vol. 59, No. 4, pp. 363-376.

  • Chumachenko S.I., Korotkov V.N., Palenova M.M., Politov D.V., Simulation modelling of long-term stand dynamics at different scenarios of forest management for coniferous - broad-leaved forests, Ecological Modeling, 2003, Vol. 170, No. 2-3, pp. 345-361.

  • Daniels R.F., Burkhart H.E., Clason T.R., A comparison of competition measures for predicting growth of loblolly pine trees, Canadian Journal of Forest Research, 1986, Vol. 16, No. 6, pp. 1230-1237.

  • Fortin M., Bédard S., Deblois J., SaMARE : un modèle par tiges individuelles destiné à la prévision de la croissance des érablières de structure inéquienne du Québec méridional, Québec: Gouvernement du Québec, 2009, 38 p.

  • Friend A.D., Stevens A.K., Knox R.G., Cannell M.G.R., A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0), Ecological Modelling, 1997, Vol. 95, No. 2, pp. 249-287.

  • Frolov P.V., Zubkova E.V., Komarov A.S., A cellular automata model for a community comprising two plant species of different growth forms, Biology Bulletin, 2015, Vol. 42, No. 4, pp. 279-286.

  • Gobakken L.R., Mattson J., Alfredsen G., In-service performance of wood depends upon the critical in-situ conditions. Case studies, The International Research Group on Wood Protection 39th Annual Meeting, Istanbul, 25-29 May 2008, Stockholm: IRG Secretariat, 2008, Article 08-20382.

  • Grabarnik P., Myllymäki M., Stoyan D., Correct testing of mark independence for marked point patterns, Ecological Modelling, 2011, Vol. 222, No. 23-24, pp. 3888–3894.

  • Grabarnik P., Särkkä A., Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions, Ecological Modelling, 2009, Vol. 220, No. 9-10, pp. 1232-1240.

  • Grabarnik P.Y., Analiz gorizontal'noi struktury drevostoya: model'nyi podkhod (Analysis of the horizontal structure of a forest stand: model approach), Lesovedenie, 2010, No. 2, pp. 77–85.

  • Grote R., Pretzsch H., A model for individual tree development based on physiological processes, Plant Biology, 2002, Vol. 4, No. 2, pp. 167-180.

  • He H.S., Mladenoff D.J., Boeder J., An object-oriented forest landscape model and its representation of tree species, Ecological Modelling, 1999, Vol. 119, No. 1, pp. 1-19.

  • Hirvelä H., Härkönen K., Lempinen R., Salminen O., MELA2016 Reference Manual, Helsinki: Natural Resources Institute Finland, 2017, Vol. 7, 546 p.

  • http://www.coupmodel.com/default.htm, (30 January 2019).

  • https://www.biodiversity.ru/programs/ecoservices/first-steps/Status_Quo_Report_2013_sm.pdf, (31 January 2019).

  • Hynynen J., Ahtikoski A., Siitonen J., Sievänen R., Liski J., Applying the MOTTI simulator to analyse the effects of alternative management schedules on timber and non-timber production, Forest Ecology and Management, 2005, Vol. 207, No. 1, pp. 5-18.

  • Kahle H.-P., Karjalainen T., Schuck A., Ågren G., Kellomäki S., Mellert K., Prietzel J., Rehfuess K.-E., Spiecker H., Causes and consequences of forest growth trends in Europe: Results of the Recognition Project, Leiden: Brill, 2008, 261 p.

  • Kellomäki S., Väisänen H., Strandman H., FINNFOR: a model for calculating the response of the boreal forest ecosystem to climate changes, Joensuu: JoY, 1993, 120 p.

  • Kimmins J.P., Mailly D., Seely B., Modelling forest ecosystem net primary production: the hybrid simulation approach used in forecast, Ecological Modelling, 1999, Vol. 122, No. 3, pp. 195-224.

  • Kolobov A.N., Modelirovanie prostranstvenno-vremennoi dinamiki drevesnykh soobshchestv: individual'no-orientirovannyi podkhod (Modeling of spatiotemporal dynamics of the wooden communities: individually aligned approach), Lesovedenie, 2014, No. 5, pp. 72-82.

  • Kolobov A.N., Frisman E.Y., Individual-based model of spatio-temporal dynamics of mixed forest stands, Ecological Complexity, 2016, Vol. 27, pp. 29-39.

  • Komarov A., Chertov O., Bykhovets S., Shaw C., Nadporozhskaya M., Frolov P., Shashkov M., Shanin V., Grabarnik P., Priputina I., Zubkova E., Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing, Ecological Modelling, 2017, Vol. 345, pp. 113-124.

  • Komarov A., Chertov O., Zudin S., Nadporozhskaya M., Mikhailov A., Bykhovets S., Zudina E., Zoubkova E., EFIMOD 2 - A model of growth and elements cycling in boreal forest ecosystems, Ecological Modelling, 2003, Vol. 170, No. 2-3, pp. 373-392.

  • Komarov A.S., Zubkova E.V., Frolov P.V., Kletochno-avtomatnaya model' dinamiki populyatsii i soobshchestv kustarnichkov (Cellular-automata model of the dwarf shrubs populations and communities dynamics), Sibirskii lesnoi zhurnal, 2015, No. 3, pp. 57-69.

  • Korzukhin M.D., Ter-Mikaelian M.T., Wagner R.G., Process versus empirical models: which approach for forest ecosystem management? , Canadian Journal of Forest Research, 1996, Vol. 26, No. 5, pp. 879-887.

  • Korzukhin M.D., Tselniker Y.L., Semenov S.M., Ecophysiological model of net primary production of woody species and estimation of their climatic ranges, Russian Meteorology and Hydrology, 2008, Vol. 33, No. 12, pp. 790-800.

  • Kryudener A.A., Osnovy klassifikatsii tipov nasazhdenii i ikh narodokhozyaistvennoe znachenie v obikhode strany (Fundamentals of classification of forest types: the value for public economy in practice of the country), Petrograd: Tipografiya Glavnogo Upravleniya Udelov, 1916, 190 p.

  • Kudeyarov V.N., Modelirovanie dinamiki organicheskogo veshchestva v lesnykh ekosistemakh (Modeling of organic matter dynamics in forest ecosystems), Moscow: Nauka, 2007, 380 p.

  • Kurz W.A., Dymond C.C., White T.M., Stinson G., Shaw C.H., Rampley G.J., Smyth C., Simpson B.N., Neilson E.T., Trofymow J.A., Metsaranta J., Apps M.J., CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards, Ecological Modelling, 2009, Vol. 220, No. 4, pp. 480-504.

  • Larocque G.R., Komarov A., Chertov O., Shanin V., Liu J., Bhatti J.S., Wang W., Peng C., Shugart H.H., Xi W., Holm J.A., Process-based models: A synthesis of models and applications to address environmental and management issues, In: Ecological Forest Management Handbook Boca Raton: CRC Press, 2016, pp. 223-266 (604 p.).

  • Law R., Illian J., Burslem D.F.R.P., Gratzer G., Gunatilleke C.V.S., Gunatilleke I.a.U.N., Ecological information from spatial patterns of plants: insights from point process theory, Journal of Ecology, 2009, Vol. 97, No. 4, pp. 616-628.

  • Li C., Frolking S., Frolking T.A., A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity, Journal of Geophysical Research: Atmospheres, 1992, Vol. 97, No. D9, pp. 9759-9776.

  • Linkosalo T., Kolari P., Pumpanen J., New decomposition rate functions based on volumetric soil water content for the ROMUL soil organic matter dynamics model, Ecological Modelling, 2013, Vol. 263, pp. 109-118.

  • Liski J., Palosuo T., Peltoniemi M., Sievänen R., Carbon and decomposition model Yasso for forest soils, Ecological Modelling, 2005, Vol. 189, No. 1, pp. 168-182.

  • Marconi S., Chiti T., Nolè A., Valentini R., Collalti A., The role of respiration in estimation of net carbon cycle: Coupling soil carbon dynamics and canopy turnover in a novel version of 3D-CMCC forest ecosystem model, Forests, 2017, Vol. 8, No. 6, Article 220.

  • Matejicek L., Vavrova E., Cudlin P., Spatio-temporal modelling of ground vegetation development in mountain spruce forests, Ecological Modelling, 2011, Vol. 222, No. 14, pp. 2584-2592.

  • Menzhulin G.V., Modelirovanie vlagoobmena i transpiratsii v sisteme pochva-rastenie-atmosfera (Modeling of water cycle and transpiration between soil, plant and the atmosphere), In: Trudy Gosudarstvennogo gidrologicheskogo instituta (Proceedings of the State hydrological institute): 1977, Vol. 247, pp. 36-44.

  • Miina J., Pukkala T., Application of ecological field theory in distance-dependent growth modelling, Forest Ecology and Management, 2002, Vol. 161, No. 1, pp. 101-107.

  • Mikhailov A.V., Model' dinamiki zhivogo napochvennogo pokrova v lesu (Modelling of dynamics of ground cover in forest), In: Matematika. Komp'yuter. Obrazovanie (Mathematics. Computer. Education) Moscow: Progress–Traditsiya, 2001, Vol. 8, Part 2, pp. 651–655 (688 p.).

  • Mony C., Garbey M., Smaoui M., Benot M.L., Large scale parameter study of an individual-based model of clonal plant with volunteer computing, Ecological Modelling, 2011, Vol. 222, No. 4, pp. 935-946.

  • Nabuurs G.-J., Schelhaas M.-J., Pussinen A., Validation of the European Forest Information Scenario Model (EFISCEN) and a projection of Finnish forests Silva Fennica, 2000, Vol. 34, No. 2, pp. 167-179.

  • Oborny B., Czárán T., Kun Á., Exploration and exploitation of resource patches by clonal growth: a spatial model on the effect of transport between modules, Ecological Modelling, 2001, Vol. 141, No. 1, pp. 151-169.

  • Parton W.J., Abiotic section of ELM, In: Grassland simulation model New York: Springer, 1978, pp. 31-53 (298 p.).

  • Parton W.J., Stewart J.W.B., Cole C.V., Dynamics of C, N, P and S in grassland soils: a model, Biogeochemistry, 1988, Vol. 5, No. 1, pp. 109-131.

  • Pastor J., Post W.M., Development of a linked forest productivity – soil process model, Oak Ridge: Oak Ridge National Laboratory, 1985, 168 p.

  • Peng C., Liu J., Dang Q., Apps M., Jiang H., TRIPLEX: a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics, Ecological Modeling, 2002, Vol. 153, No. 1-2, pp. 109-130.

  • Perttunen J., The LIGNUM functional-structural tree model. Doctor of philosophy thesis, Helsinki: TKK, 2009, 52 p.

  • Petropavlovskii B.S., Mathematical and cartographic modeling of optimal sites for the growth of forest-forming species (for Primorsky krai as an example), Contemporary Problems of Ecology, 2011, Vol. 4, No. 6, pp. 563-567.

  • Poluektov R.A., Smolyar E.I., Terleev V.V., Topazh A.G., Modeli produktsionnogo protsessa sel'skokhozyaistvennykh kul'tur (Models of production process of crops), Saint Petersburg: Izd-vo SPbGU, 2006, 396 p.

  • Porté A., Bartelink H.H., Modelling mixed forest growth: a review of models for forest management, Ecological Modelling, 2002, Vol. 150, No. 1, pp. 141-188.

  • Priputina I.V., Frolova G.G., Bykhovets S.S., Shanin V.N., Lebedev V.G., Shestibratov K.A., Modelirovanie produktivnosti lesnykh plantatsii pri raznykh skhemakh prostranstvennogo razmeshcheniya derev'ev (Modeling the productivity of forest plantations with the different spacing the trees), Matematicheskaya biologiya i bioinformatika, 2016, Vol. 11, No. 2, pp. 245-262.

  • Razumovskii S.M., Trudy po ekologii i biogeografii (Ecological and biogeographical studies), Moscow: KMK, 2011, 722 p.

  • Salas E., Ozier-Lafontaine H., Nygren P., A fractal root model applied for estimating the root biomass and architecture in two tropical legume tree species, Annals of Forest Science, 2004, Vol. 61, No. 4, pp. 337-345.

  • Schelhaas M.J., Eggers J., Lindner M., Nabuurs G.J., Pussinen A., Päivinen R., Schuck A., Verkerk P.J., Van Der Werf D.C., Zudin S., Model documentation for the European Forest Information Scenario model (EFISCEN 3.1.3), Wageningen: Alterra, 2007, 118 p.

  • Schelhaas M.J., Van Esch P.W., Groen T.A., De Jong B.H.J., Kanninen M., Liski J., Masera O., Mohren G.M.J., Nabuurs G.J., Palosuo T., Pedroni L., Vallejo A., Vilén T., CO2FIX V 3.1 – A modelling framework for quantifying carbon sequestration in forest ecosystems, Wageningen: Alterra, 2004, 122 p.

  • Scheller R.M., Domingo J.B., Sturtevant B.R., Williams J.S., Rudy A., Gustafson E.J., Mladenoff D.J., Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution, Ecological Modelling, 2007, Vol. 201, No. 3, pp. 409-419.

  • Schneider R., Franceschini T., Fortin M., Martin-Ducup O., Gauthray-Guyénet V., Larocque G.R., Marshall P., Bérubé-Deschênes A., Growth and yield models for predicting tree and stand productivity, In: Ecological Forest Management Handbook Boca Raton: CRC Press, 2016, pp. 141-178 (604 p.).

  • Seidl R., Rammer W., Scheller R.M., Spies T.A., An individual-based process model to simulate landscape-scale forest ecosystem dynamics, Ecological Modeling, 2012, Vol. 231, pp. 87-100.

  • Shanin V., Mäkipää R., Shashkov M., Ivanova N., Shestibratov K., Moskalenko S., Rocheva L., Grabarnik P., Bobkova K., Manov A., Osipov A., Burnasheva E., Bezrukova M., New procedure for the simulation of belowground competition can improve the performance of forest simulation models, European Journal of Forest Research, 2015, Vol. 134, No. 6, pp. 1055-1074.

  • Shanin V.N., Komarov A.S., Mikhailov A.V., Bykhovets S.S., Modelling carbon and nitrogen dynamics in forest ecosystems of Central Russia under different climate change scenarios and forest management regimes, Ecological Modelling, 2011, Vol. 222, No. 14, pp. 2262-2275.

  • Shugart H.H., A theory of forest dynamics: The ecological implications of forest succession models, Berlin: Springer, 1984, 278 p.

  • Shuman J.K., Shugart H.H., Krankina O.N., Testing individual-based models of forest dynamics: Issues and an example from the boreal forests of Russia, Ecological Modelling, 2014, Vol. 293, pp. 102-110.

  • Shvidenko A.Z., Shchepashchenko D.G., Nil'son S., Bului Y.I., Tablitsy i modeli khoda rosta i produktivnosti nasazhdenii osnovnykh lesoobrazuyushchikh porod Severnoi Evrazii: normativno-spravochnye materialy (Tables and models of growth and productivity of forests of major forest forming species of Northern Eurasia), Moscow: Izd-vo Rosleskhoz, IIASA, 2008, 886 p.

  • Sitch S., Smith B., Prentice I.C., Arneth A., Bondeau A., Cramer W., Kaplan J.O., Levis S., Lucht W., Sykes M.T., Thonicke K., Venevsky S., Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biology, 2003, Vol. 9, No. 2, pp. 161-185.

  • Smirnova O.V., Vostochnoevropeiskie lesa: istoriya v golotsene i sovremennost' (Eastern European forest in the Holocene and modern history), Moscow: Nauka, 2004, Vol. 1, 479 p.

  • Somogyi Z., A framework for quantifying environmental sustainability, Ecological Indicators, 2016, Vol. 61, Part 2, pp. 338-345.

  • Stoyan D., Stoyan H., Fractals, random shapes, and point fields: methods of geometrical statistics, Chichester: John Wiley & Sons, 1994, 389 p.

  • Sysuev V.V., Bondar' Y.N., Chumachenko S.I., Modelirovanie struktury landshaftov i dinamiki drevostoev dlya planirovaniya ustoichivogo lesopol'zovaniya (Modeling of landscape structure and forest stands dynamics for sustainable forest management planning purposes), Vestnik Moskovskogo universiteta. Seriya 5: Geografiya, 2010, No. 6, pp. 39-48.

  • Tiktak A., Van Grinsven H.J.M., Review of sixteen forest-soil-atmosphere models, Ecological Modelling, 1995, Vol. 83, No. 1-2, pp. 35-53.

  • Tobin B., Čermák J., Chiatante D., Danjon F., Di Iorio A., Dupuy L., Eshel A., Jourdan C., Kalliokoski T., Laiho R., Nadezhdina N., Nicoll B., Pagès L., Silva J., Spanos I., Towards developmental modelling of tree root systems, Plant Biosystems, 2007, Vol. 141, No. 3, pp. 481-501.

  • Wiegand T., Moloney K.A., Handbook of spatial point-pattern analysis in ecology, Boca Raton: CRC Press, 2013, 538 p.

  • Wildová R., Gough L., Herben T., Hershock C., Goldberg D.E., Architectural and growth traits differ in effects on performance of clonal plants: an analysis using a field-parameterized simulation model, Oikos, 2007, Vol. 116, No. 5, pp. 836-852.

  • Yue C., Kahle H.-P., Von Wilpert K., Kohnle U., A dynamic environment-sensitive site index model for the prediction of site productivity potential under climate change, Ecological Modelling, 2016, Vol. 337, pp. 48-62.

  • Zamolodchikov D.G., Grabovskii V.I., Kraev G.N., A twenty year retrospective on the forest carbon dynamics, Contemporary Problems of Ecology, 2011, Vol. 4, No. 7, pp. 706-715.

  • Zamolodchikov D.G., Korovin G.N., Gitarskii M.L., Byudzhet ugleroda upravlyaemykh lesov Rossiiskoi Federatsii (Carbon budget of the managed forests of the Russian Federation), Lesovedenie, 2007, No. 6, pp. 23-34.

  • Zhukova L.A., Kontseptsiya fitogennykh polei i sovremennye aspekty ikh izucheniya (Concept phytogenic fields and current issues their study), Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi Akademii nauk, 2012, Vol. 14, No. 1-6, pp. 1462-1465.